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The stability of a plane Rossby wave in a homogeneous fluid is considered. When the 
two-dimensional equation which governs fluid flow on a beta-plane is linearized in the 
disturbance stream function, a partial differential equation with a periodic coefficient 
results. Substitution of a solution dictated by the Floquet theory leads to a determinant 
equation, and it may be shown from its symmetry properties that disturbances to a 
Rossby wave may be of only two types: (i) neutrally stable modes not necessarily 
contiguous to a stability boundary and (ii) a pair of temporally unstable waves, one 
growing and the other decaying. 

The determinant is solved numerically for the neutral-stability boundaries and 
curves of constant disturbance growth rate; two distinct types of instability emerge. 
The first is the parametric instability, which renders all waves unstable, and is shown 
to be asymptotic to the classical nonlinear resonant interaction in the limit of vanishing 
basic-state amplitude. The details of the disturbance frequency bifurcation for zero- 
amplitude basic-state waves are presented, and calculations for waves with eastward 
and westward group velocities are made and discussed in the context of Rhines’ (1975) 
results for waves and turbulence on a beta-plane. In  addition, a second type of insta- 
bility is computed which is separate and distinct from the parametric instability. 
The very limited evidence presented suggests that this second kind of instability may 
possess characteristics which are identifiable in part with the shearing of the fluid by 
the large-amplitude basic state and in part with the overturning of the ambient 
vorticity gradient. 

1. Introduction 
The atmosphere and oceans exhibit lateral inhomogeneities whose horizontal 

extents may be much smaller than the overall boundary dimensions of the respective 
medium. The sources and behaviour of these mesoscale phenomena have been the 
object of a great deal of intensive study. Baroclinicity and the influence of bottom 
topography are of crucial importance in describing the dynamics of these systems; 
however simplified models which address themselves to even more basic underlying 
phenomena can yield impressive results. For example, Rhines (1  975) has attempted 
to model barotropic turbulence and waves with a simple beta-plane model which 
retains only the advective nonlinearity, bottom friction and viscous dissipation; some 
interesting results have emerged from this study. 

As a result of his calculations, he points out that nonlinearities favour the transfer 
of energy into the motions with longer time and length scales, which is precisely the 
region of space and time in which the beta effect becomes important. Rhines argues 
that there exists a limiting size for eddies, which seems to be corroborated by observa- 
tion, and his work underlines the importance of nonlinearities to Rossby wave motions. 
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I n  a somewhat related paper, Firing & Beardsley (1 976) have followed the evolution 
of a barotropic eddy on a beta-plane. Their results indicate that, when the Rossby 
number is not small, the nonlinear evolution of an eddy is qualitatively different from 
that observed when the eddy is synthesized from a sum of many Rossby waves and 
allowed to evolve linearly. The observed differences are presumably due at least in 
part to the mutual interaction and the concomitant energy interchange among these 
waves. Longuet-Higgins & Gill (1967) first calculated the details of the interaction 
and found that nonlinear resonant interactions somewhat similar to the mutual 
interaction of internal gravity waves take place among Rossby waves. 

Also of interest in this context is the work of Lorenz (1972), who, motivated by 
questions of the predictability of the atmosphere, found that simple barotropic Rossby 
waves in the presence of a uniform westerly current were unstable, although the 
precise mechanism was unclear. Later, Hoskins & Hollingsworth (1973) noted the 
critical dependence of the instability upon the disturbance phase speed. Gill (1974) 
was the first to observe that for vanishing amplitude, however, a Rossby wave exhibits 
an instability that is actually a nonlinear resonant interaction, while, for large ampli- 
tudes, the instability is caused by the shearing motion of the wave itself. The resonant 
identity of the small-amplitude instability would appear also to follow from 
Hasselmann’s (1  967) general theorem regarding the nature of second-order resonant 
instabilities. Thus the instability of small-amplitude Rossby waves is of a para- 
metric nature and similar to that observed by Baines (1976) for Rossby-Haurwitz 
waves and by McEwan & Robinson (1975) and Mied (1976) for internal gravity waves. 

In  the present work we again examine the parametric instability and the instability 
of the second kind for finite-amplitude Rossby waves in an inviscid fluid on a beta- 
plane. This is accomplished essentially by the use of the Floquet theory of Gill (1974), 
but relies heavily upon the numerical solution of the resulting large Hill’s determinant 
using complex arithmetic. By viewing the interaction problem for an arbitrarily large 
basic-state amplitude as a parametric instability involving many disturbance modes, 
it is hoped that the limits of validity of Gill’s truncated solution, which considers 
small-amplitude basic-state waves, may be established and that some salient features 
of the parametric interaction of a single finite-amplitude wave with infinitesimal 
waves will become apparent. Another facet of this work, however, deals with some 
effects which occur at very large basic-state amplitudes. Among these are the occur- 
rence of the instability of the second kind, which appears to require the existence of a 
critical basic-state amplitude, and the behaviour of the parametric instability for these 
large wave amplitudes. In  particular, we present some very limited numerical evidence 
which tends to suggest that the two instabilities are separate and distinct. 

While this work was being reviewed, several papers have appeared in the literature 
which are related to the present one. Plumb (1977) has discussed the problem of the 
stability of small-amplitude Rossby waves in a channel, while Gavrilin & Zhmur 
(1  977) have examined the baroclinic instability of small-amplitude waves. Coaker 
(1977) has established the relationship of the small-amplitude phase instability with 
the classical asymptotic case. The principal manner in which these three studies 
differ from the present one lies fundamentally in the basic-state amplitude ranges 
treated and in the fact that the instability of the second kind has been briefly discussed 
in the present work. 
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2. Rossby waves in a homogeneous fluid 
The conservation of vorticity of a fluid column of height H i s  expressed by 

where f = 2Q sin (latitude), i2 = earth’s rotation frequency, [ = + V2Y and Y is the 
stream function. If the + x and + y axes are aligned with the easterly and northerly 
directions respectively, the stream function is related to the velocity by u = ( -Yv, Y,). 
For a fluid shell of constant depth, (1)  may be written in terms of the stream function 
Y and p ,  the northward gradient off :  

V2Y, +PYX = Y,V2YX -Yx V2Y,. (2) 

By neglecting the right-hand side of (2), the linearized problem can be shown to 
admit the gravity-wave solution 

Y = Uk-l sin (lx + my + wt)  (3) 

provided that w = p l / k 2 ,  (4) 

where U is the maximum particle speed, k = I k[ = ( I ,  m) and w is the frequency. 
By virtue of the incompressibility condition V . u = 0, these waves are transverse, 

their wavenumber being perpendicular to the particle paths. Because of this transverse 
character of the wave propagation, (3) also satisfies the right-hand side of (2) and 
is thus an exact nonlinear solution. 

Although these waves are exact solutions of the vorticity equation, a sum of two 
or more of them will not in general satisfy (2) exactly unless certain constraints are 
placed upon that sum. In particular, Longuet-Higgins & Gill (1967) have shown that 
second-order nonlinear resonant interactions can take place among three freely 
propagating Rossby waves provided that their frequencies wi and wavenumbers ki 
sum to zero. Thus 

w , + w , + w ~  = 0, kl+k2+k3 = 0. (5) 

In  figures 1 (a )  and (b),? the locus of waves which are possible candidates for such an 
interaction with the wave k, is shown. Of the waves pictured however, only a signifi- 
cantly smaller portion will actually participate in the resonant depletion of k, energy. 
This additional restriction arises because energy may flow from k, only when the 
wavenumbers are ordered such that 

Gill (1974) has shown that this restriction is valid even when one of these waves 
becomes of finite amplitude, and this statement is corroborated by the numerical work 
presented in $ 5  3 and 4. 

t In this figure and in all of the work which follows, the disturbance frequencies are taken as 
positive so that the actual direction of phase propagation is opposite to the wavenumber 
direction. This is in contrast to the frequency of the basic state, which turns out to be negative, 
so that its phase propagation is always in the direction shown. 
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FIGURE 1. (a )  The closed solid contour represents all waves which satisfy the resonance conditions 
( 5 )  and the disporsion relation (4). The vector - ak, extends from the origin to the geometrical 
centre of the figure, thus k,, k, = 3( - k, ko). The dashed line represents a lcinematical limit 
(see $ 2 )  such that energy flows from k, provided that (k,l < Ik21 < Ik,J. Here 19 = 120" and we 
normalize 1 k,( as 1. (15) The closed contour and dashed circle are as in (a) but in this case 8 = 150.0"; 
and /k,l is again normalized to unity. 
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3. The parametric instability of barotropic Rossby waves 
3.1. The governing equation 

In 0 2, it was mentioned that the Rossby wave given by (3) and (4) is an exact solution 
of the beta-plane equation (2). This fact affords us the opportunity to examine the 
consequences of allowing the amplitude of the wave to become quite large and to 
investigate the parametric instability a t  these large amplitudes. 

Accordingly, let us express the stream function of the flow as a sum of the basic-state 
wave and a disturbance part, so that 

(6) Y = Uk-l sin (lx +my + wt) + $, 
where w = pl /kz .  Substitution of (6) into (2), which governs the conservation of 
vorticity for the disturbance $, gives? 

V2$t +&hx = Uk cos q5(m$x - l$,,) + Uk-I cos q5(mV2$x - lV2$,,), (7) 
where q5 = lx +my + wt and terms nonlinear in Ijr have been neglected. To facilitate 
comparison with the work of Longuet-Higgins & Gill (1967), the equivalence k = k, 
is made. 

Equation (7 )  may be non-dimensionalized through the introduction of the quantities 

(2,Q) = k(x,y), f = Pk-lt, @ = kU-I$. 
Introducing these variables into (7 )  and dropping the carets, we have 

Because the phase of the basic-state wave propagates at an angle 6 (90' < t? < 270") 
to the +x  axis considerable simplification of (8) may be gained by introducing 
a rotated co-ordinate system (6) 7). From figure 2, we see that 

= xsinO-ycos6, 7 = xcosB+ysint? 

and that Ilk = cos 0 and mlk = sin 0. The governing equation thus becomes 

where q5 = 7 + t  cos6 and M = U k 2 / p  is a measure of the wave amplitude. 

V2$, + (sin &+hC + cos 6$,) = M cos q5 ($( + V2$t), (9) 

Equation (9) may be seen to possess a separable Floquet solution of the form 
4-00 

where cy. and P are real, and h and $, may be considered complex. Substituting (lo) 
into (9) and re-indexing the sums leads to a recursion relation which links three 
contiguous pn's: 

aM(qn-1- 1 $%-I+ 2i(qn An -Pn) $n + "M(qn+l- 1 )  $,+I= 0, 

(11) n = 0, 1,  2 2, ..., 
and A, = A+incos0, qn = (n+/3)2+aZ, 

pn = i[asinO+(n+,4)cosO]. 

t Equation (7) corresponds to  equation (2.9) of Gill (1974) and his solution (3.8) is equivalent 
to equation (10) below, except for a rotation of the co-ordinate axes. 
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FIGURE 2. The fx axis is directed due east, while the + y axis points north. The t, 7 co-ordinate 
system is rotated such that the q axis is aligned with the direction 0 of phase propagation of the 
basic-state wave. 

Gill ( 1  974) has shown that ( 1  1 )  (his equation 3.13) must contain the essential physics 
of the classical nonlinear resonant interaction when U = 0 (or Jl = 0 here), so that the 
parametric instability (for M 0) must reduce to this well-known case in the asymp- 
totic limit M --f 0. By expressing the 9, and A, as a power series in M ,  we may formalize 
this argument. 

3.2. The analytical approach for small M 
Since a priori knowledge of the behaviour of the asymptotic limit suggests that two 
parasitic waves with which the basic state is resonant must dominate the solution, 
we write 

$, N l+$,,M+ ..., 
$1 $10+$11 M + * . * 7  

$n N O(M) ,  n .t; 0,1,  

h - ,h+,hM+ ..., 
where the leading term in 9, has been arbitrarily normalized to unity. Equation (1 1) 
reveals the following balances, correct to O(M) .  For n = 0, the O(M0) and O ( M )  
equations are, respectively, 

- 2(p2 + a2) ,A + 2i(a sin 8 +I cos 6 )  = 0, (12a) 

+2i(P2+a2)IA+a[(l+,4)2+a2-1]$10 = 0, ( 1 2 b )  

(13a) 

(13b) 

while, for n = 1,  the O(Mo) and O ( M )  equations are 

- 2[(1 +,!?)2 + a2] (,A + i cos 0) + 2i[a sin8 + ( 1  +p) cos 81 = 0, 

+a(P2+a2- 1)+2i[(1 +/i’)2+a2]lA$10 = 0. 

From (12a) we see that 
asinO+pcosB. 

,A = a2 + pz 8 ,  

-cosB i. 1 asin8+(1 +p)cos8 
a2 + ( 1  + p ) ~  while ( 1 3 4  leads to ,A = [ 
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The apparent ambiguity in the value of ,A is spurious, and actually serves to define a 
curve p = p(a; 8) along which parametric instabilities for M N 0 are possible. To see 
this we eliminate ,A from the above two equations and obtain after some manipulation 

By fixing a and iterating on p, it  may indeed be verified that the resulting curves 
/3 = p(a; 8) are the resonance loci shown in figures 1 (a )  and (b) .  

The equations obtained from the O ( M )  terms [ ( 1 2 b )  and (13b)l are readily solved 
to yield 

All of the square-bracketed expressions on the right-hand side are positive semi- 
definite, with the exception of [p2+a2- 11. From (10) we see that (a2+p2)* is the 
magnitude of the Floquet vector multiplying the infinite sum. As was mentioned in 
5 2, this vector magnitude must always be less than unity if an instability is to occur. 
Clearly then, ,A is real and the complex frequency may be written as 

A N %  . CY. sin 8 +p cos 8 'l)b&f+O(M2). (15) 
p2 + a2 

The time scale for the growth is thus of order M-l, while any correction to the speed 
of propagation for these disturbances must be of order M 2  or higher. We may not 
proceed to  O(M2) because this quasi-linear disturbance model neglects products of 9 
derivatives, which contain O ( M 2 )  terms. The relation between the parametric insta- 
bility and the nonlinear resonant interactiont has been formalized, however, and will 
be further discussed in $3.4. 

For finite M ,  the wavenumber (a, p)  can be expected to be a function of M also, 
as in the related internal-wave problem (Mied 1976). This information is most easily 
extracted from the system numerically however, and it is to this task that we next 
turn our attention. 

3.3. The numerical approach for large M 
In  the work which follows, it will be convenient to anticipate that h is complex and thus 
write 

Then, if we take the complex conjugate of (11)  and reverse the sign of A,, it may be 
easily seen that 

This symmetry property implies that a growing mode (A, > 0) must be associated 
with a decaying one (A, < 0). Thus it follows immediately that the a, p, hi, $1, 8 
parameter space possesses only two types of wave: neutrally stable oscillations 

t The asymptotic limit M + 0 corresponds to the weak-interaction limit U = 0 in Gill's 

A = A, + ih,. 

$n(a, p, A,, hi, M ;  6 )  = @$(a, p, - A,, hi, M ;  0). (16) 

work. 
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(A, = 0) and temporally unstable Rossby waves (A, 4 0). We remark in this regard that 
Lorenz ( 1  972) discovered a neutral mode and a pair of growing and decaying waves 
in the particular problem which he posed. 

A second property may be established and is of great utility. By manipulating (1 I), 
it may be seen that 

$Ja, P, hi, M ;  0) = pC3 - a,P, - hi, M ;  7r - 0). (17) 

We note that this relates the coefficients @n to those obtained by reflecting the basic- 
state wave in the - x axis [see figure 2 and ( G ) ] .  The implication is that by investigating 
merely the quadrant 90" < 8 < 180" the stability properties of Rossby waves of any 
amplitude may be regarded as known in the half-plane 90" < 8 < 270". The emergence 
of this property from (11) is not unexpected, and it further serves as a check on the 
numerical results. 

The substitution, in turn, of the integer values n = 0, _+ 1 ,  _+ 2, ... into (11)  will 
yield an infinite number of homogeneous equations, although it is hoped that the 
truncation of the determinant at  n = ? N will converge, before N becomes too large, 
to the results obtained for the infinite determinant. A sufficient condition for these 
equations to possess a solution is that the determinant A(a, ,f3, A,, hi, M ;  0) vanishes. 
This determinant, which is evaluated by Gaussian elimination (Noble 1969, p. 211), 
is complex, so that the requirement A = 0 in fact imposes two restrictions, namely 

ReA = 0, I m b  = 0. (18) 

It is helpful to point out that the solution of ( 18) really involves the following question. 
Given a basic-state wave with direction 8, as well as a disturbance set that grows at  a 
rate A, with a particular Floquet vector (a,  P) ,  what is the frequency hi of that disturb- 
ance and what is the basic-state amplitude M required for that growth rate? 

The solution of (9) thus relies upon a search for roots in the hi, M plane after specify- 
ing a, p, A, and 0 as parameters. This is seen to be the case because the loci of the zeros 
of the real and imaginary parts of the determinant (18) are curves in the hi, M plane. 
The location of their crossing point(s) in this plane will then specify a complete solution 
to the problem. Recourse can be had to the method of 'boxing in' the root by succes- 
sively halving the size of a square in the hi, M plane, but the more efficient Newton- 
Raphson technique is employed in this work (see appendix). The advantage is that 
one need know only the approximate location of the root and supply this first guess 
to the iterative scheme in order that the root emerges after several iterations. Although 
no systematic study has been made of the convergence properties of the method, this 
iterative technique always seems to converge to a root provided only that the rate of 
change of A with any of its parameters is not excessively large. Some specific comments 
regarding accuracy and convergence are made in 3 4 and in the appendix, however. 

3.4. Discussion of the parametric instability 
From the analytical theory in 83.2, we can see that the parametric instability is 
asymptotic in M to the case of the nonlinear resonant instability. In particular, the 
growth of the instability occurs on time scales of order M-l ,  while any correction to the 
frequency hi must enter with terms of order M 2  or higher. This would appear to be 
consistent with the trends observed in other second-order nonlinear resonant theories. 
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For example, McGoldrick's (1 965) calculations of interactions among capillary surface 
waves and the similar work by Davis & Acrivos (1967) on trapped thermocline waves 
reveal a similar amplitude-ordering scheme. As the amplitude M of the basic state 
increases, the instability assumes a parametric character, so that the general result 
of Hasselmann (1 967) is valid also. He observed that nonlinear systems which exhibit 
an interaction at second order in amplitude will always allow the exponential growth 
of disturbances at the expense of the basic-state wave provided that the amplitude of 
that wave is a finite constant. 

In  the present work, we are interested in finding not only the exponential growth 
rates, but also the curves in the parameter space which separate neutrally stable 
Rossby waves from the unstable ones (f 3.3). Because of the complexity of the physical 
system (1 1), the analytical approach can be relied upon to be indicative of trends at  
small M ;  however detailed information regarding the nature of the instability is most 
easily accessible through numerical techniques. With the use of the Newton-Raphson 
method, detailed information about the roots can be rapidly obtained to arbitrary 
accuracy (see appendix). These calculations have been performed on an iterative basis 
until two successive iterations for both roots (hi, M )  agree to within 0.1 yo. While any 
accuracy is theoretically obtainable, little is gained by proceeding further if the results 
are to be presented in only graphical form. Although a more thorough discussion of 
accuracy is given in the appendix, we point out here that all the calculations discussed 
in this section were performed with a seventh-order determinant (Nl = 7). 

In  figure 3, the results for a simple neutral-stability curve (A, = 0) and associated 
curves of constant growth rate are presented. These are plotted in the a, M plane for 
0 = 150' and p = - 0.1, and appear to be qualitatively similar to those found by 
Mied (1976) in his investigation of the parametric instability of internal waves. When 
M N 0, i.e. when the basic-state wave has a very small amplitude, the range of the 
wavenumber a over which instability may occur is vanishingly small. In this neigh- 
bourhood of M = 0 however, the basic-state and disturbance waves propagate 
independently of one another, and, concomitantly, this region M < 1 is the one in 
vhich the parametric instability is asymptotic to the nonlinear resonant-interaction 
formalism. As M is increased however, the range of wavenumbers a which may 
abstract energy from the basic state is significantly increased. By virtue of the nature 
of the solution (lo), these disturbances are always resonant with the basic state in that 
wavenumber and frequency constraints similar to the resonance conditions ( 5 )  of 
the asymptotic theory are always valid. The difference lies in the fact that for M + 0 
these disturbance waves must propagate in the presence of a temporally and spatially 
varying basic state, and this requires that they assume a dispersion relation different 
from that given by (4) for the case of small-amplitude waves in an otherwise quiescent 
medium. 

It is not generally observed to be the case that all neutral-stability curves in this 
complicated nonlinear problem qualitatively resemble the V-shape of that in figure 
3, or those arising from a similar treatment of the somewhat simpler Mathieu equation 
(see, for example, Abramowitz & Stegun 1965, chap. 20). In fact, these curves need not 
necessarily possess the V-shape in the M ,  wavenumber plane which is assumed in the 
somewhat limited existing literature as being characteristic of their genre. In  figure 4, 
for instance, the case 8 = 150" is again treated but now p is varied and a = 0.22. In  
addition to  the odd shape of the A, = 0 curve for moderate values of M ,  this curve 
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FIGURE 3. The curve of neutral stability A, = 0 and the curves of constant growth 
rate A, = 0.01,0.02 and 0.03 in the a, M plane. 8 = 150.0", /I = -0.1 and Nl = 7.  

does not continue to broaden with increasingly larger M but instead assumes a vertical 
slope for some value of a > 0.13. 

Because of the qualitatively dissimilar nature of these two neutral-stability curves, 
one would suspect that most features of the parametric instability cannot be grasped 
by conducting somewhat random traverses across the resonance curves pictured in 
figures 1 (a)  and (b ) .  For this reason, it is useful to  map the curves of constant M in the 
a, p Ploquet plane when A, = 0. Moreover, the concept of the Floquet plane is a useful 
one because all the information regarding the instability is contained within the 
circle a2 +p2 < 1. This occurs because all Rasby-wave instabilities must include at 
least one wave whose wavenumber is less than that of the basic state (see $2).  In  
figure 5, such a plot is made for the case 8 = 150' (with eastward group velocity) and 
the contours M = 0, 0.1, 0.2 and 0.3 are shown; the contour M = 0 is, of course, the 
same resonance curve as is shown in figure 1 (b ) .  The sections A A  and BB are those 
depicted in figures 4 and 3 respectively, while the kinematic limit a2 + p2 = 1 is shown 
as a dashed line which passes through the end point P at (0.866, - 0.500). All the 
Jl= constant curves coalesce a t  this point. It seems unlikely that this constitutes an 
ill-defined point because, at least for very small values of M ,  Longuet-Higgins & 
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FIGURE 4. The neutral curves h, = 0 and the curves of constant growth rate for h, = 0.005, 
0.01,0.02 and 0.03 in the p, M plane. The basic state is propagating at an angle 0 = 150.0" to the 
+z axis, a = 0.22 and N ,  = 7. 

Gill (1967) point out that the interaction coefficient which specifies the time rate of 
change of the wave amplitude vanishes there. A similar phenomenon may be seen in 
figure 6, which is the Floquet-plane representation for a basic-state wave at 8 = 120' 
and thus has a westward group velocity. Again, the kinematic limit a2 +p2 = 1 appears 
as a dashed line and all constant-M contours coalesce a t  a point on this circular arc. 

The Bloquet planes for these two test cases, one with an eastward and the other 
with a westward group velocity, are qualitatively dissimilar. It is interesting to discuss 
these results in terms of those of Rhines (1  975), who observed that, in the case of the 
temporal evolution of waves and turbulence on a beta-plane, east-west velocities 
developed a t  large times; he suggests that these are a steady, quasi-permanent feature 
of such a system. Although any connexion between the behaviour of an ensemble of 
waves and the present work may be somewhat tenuous, a discussion of similarities 
in the present context seems appropriate. 

On figures 5 and 6, the direction North is indicated with an arrow and the letter 
'N'. When 8 = 120" (westward group velocity), the disturbance waves generated tend 
to deviate greatly from those arising from the M = 0 case. It is apparent, though, that 
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FIGURE 5. The Floquet plane for 0 = 150" and A, = 0. The contours shown are those for basic-state 
amplitudes M = 0 (the resonance curve of figure l b ) ,  0.1, 0.2 and 0.3. The sections A A  and BB 
represent the curves shown in figures 4 and 3 respectively. The dashed line represents the kine- 
matical limit. a2 + /Iz = 1 and is discussed in $2.  
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FIGURE 6. The Floquet plane for 0 = 120" and A, = 0. The contours M = 0, 0.1, 0.2 and 0.3 are 
shown. The curve for M = 0 is a portion of the resonance locus shown in figure 1 (a). These c ~ 1 -  
culations were made for Nl = 7. 



FiSinite-amplitude barotropic Rossby waves 237 

the Rossby waves generated possess particle trajectories which are oriented neither 
north-south nor east-west. On the other hand, examination of the case with eastward 
group velocity (0 = 150') indicates that waves of a similar nature are generated, but 
with one important addition. Referring to figure 5 ,  we see that the barb-like pro- 
tuberance towards the north (in the vicinity of section A A )  clearly indicates that this 
set of instabilities contains small vertical wavenumbers, and hence very long waves 
with zonal currents. Of all of the disturbances arising, these southward-propagating 
waves are perhaps the most temporally permanent feature of the instability, for 
Longuet-Higgins & Gill (1967) have pointed out that, while such waves may themselves 
participate in resonant interactions, their role is of a catalytic nature and thus leaves 
their identity unaltered. If these results are generally indicative of those for waves 
whosegroups propagate east and west, we may make the somewhat tenuous conclusion 
that it is more likely to be the waves which have an eastward group velocity which are 
at least one contributing factor in the appearance of Rhines' zonal currents. 

Casual observation of figures 5 and 6 might lead one to the conclusion that the 
contours of constant basic-state amplitude are not asymptotic to the curve €or M = 0. 
This is incorrect, as the neutral-stability curves which generate these lobes are actually 
of the type shown in figure 4. In  no case examined does a trough of the type shown in 
figure 4 dip down to touch the M = 0 axis. Although these results are asymptotic to the 
zero-amplitude case, they do indicate that finite-amplitude effects are present which 
may produce results not in direct qualitative agreement with the asymptotic analytic 
theory. 

This linear problem places no constraints upon the amplitudes I1c.,I, with the ex- 
ception of the stipulation that they be small with respect to that of the basic state. 
In  $3.2, however, it was shown that, for M 2: 0, $o and $, are the largest of the co- 
efficients and possess magnitudes much greater than the others. Figure 7 shows the 
normalized ratio / @ n / $ o l  for 11.1 5 0.3 and clearly indicates that /r,k-ll and llCf,l are far 
smaller than either I$lol or ; this is especially true for the smaller values of M .  The 
instability thus retains some of its asymptotic (triad) nature for finite M .  It is this facet 
which apparently ensures that the neutral curves calculated with N, = 3 differ by of 
the order of only 10 yo from those calculated with Nl = 7. 

A typical set of dispersion relations associated with the parametric instability is 
shown in figure 8. Here the frequency hi of the n = 0 vector (a, /3) [see (lo)] is plotted 
as a function of basic-state amplitude M .  Curves of constant growth rate A, = 0,0.02, 
and 0.03 are shown. At M = 0, the value of the frequency hi is the same as that given 
by the linear theory (oh in Q 3.2). A t  M = 0, however, the frequency of the neutrally 
stable wave bifurcates, so that for M > 0 there are two frequencies at  which waves 
can exist for a given value of M .  We note also that the wavenumber a can be seen to 
vary along a curve of constant A,, and an interesting phenomenon can be observed 
from this dispersion plot. 

Our assumed flow field consists of a finite-amplitude wave and an infinite sum of 
infinitesimal-amplitude disturbances. Now consider a field of Rossby waves on a beta- 
plane. Although not accurate, it  is useful for illustrative purposes to consider the 
finite-amplitude wave as being representative of a typical spectral element in our 
Rossby-wave ensemble. At time zero, the wave has the amplitude MI, but after a short 
time that amplitude has decreased to M, < M,, because the parasitic disturbances 
have gained energyat the expense of the basic state. Referring to figure 8, we see that a 
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FIQURE 8. The frequency hi of the disturbance wave for which = 0 [see (lo)] as a function of M .  
The curves are for growth rates h, = 0,0.02 and 0.03. In this case B = 150", B = - 0.1 and iVl = 7. 
The contours of constant a are shown also. 
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decrease in M means that our disturbance wave must move to a curve corresponding 
to a lower growth rate, but which path it takes to do so is open to question. For 
example, does the disturbance preserve its wavelength by moving along a curve 
a = constant, or is frequency conserved so that lines of constant wavenumber are 
crossed? There seems to be no a priori reason to believe that a disturbance must 
conserve its frequency rather than its wavelength or vice versa. Even if it were possible 
to  follow a single wave in a strongly nonlinear evolving system such as this, the char- 
acter of that wave would change continually. This result serves as a reminder that the 
concept of a dispersion relation for a member of an ensemble is useful only when the 
waves are of infinitesimal amplitude and therefore evolve slowly. 

4. Instabilities of waves of very large amplitude 
Gill (1974) has pointed out that the Rossby-wave instability is of a resonant- 

interaction nature for M < 1, while it assumes the character of a shearing instability 
for M 9 1. For intermediate values of M ,  one might assume that the two instabilities 
are the same. This view would be incorrect, as numerical evaluation of the neutral- 
stability curves indicates that for M = O(1) two separate and distinct instabilities 
can coexist. Let us briefly examine the behaviour of each type of instability. 

In  figure 9, a parametric neutral-stability curve (A, = 0 )  and a curve of constant 
growth rate (A, = 0.1 )are shown in their entirety. In this plot, the basic-state amplitude 
M is shown as a function of the in-line wavenumber ,8 for a = 0.5 and a direction of 
travel 8 = 150'. For M 5 0.3, we see that the neutral curve assumes the V-shape so 
characteristic of the small-amplitude parametric instability. For somewhat larger M 
however, we immediately perceive the most prominent feature of this neutral-stability 
curve: that it does not extend upwards indefinitely, but ends in two cusped regions. 
Thus for sufficiently large amplitudes, no wave is neutrally stable in the parametric 
sense. 

The neutral-stability curve is periodic in ,8 and the reason for this behaviour is 
clear upon examination of the disturbance solution. From (10) we see that this part 
of the stream function is given by 

+ m  

II. = exp [At + i(aE +&)I Z $n exp in(q + t cos 0). 
- m  

By increasing n by & 1 and /3 by T 1,  we see that the essential nature of the solution 
is unchanged provided only that we accept a redefinition of A. In  effect then, the neutral- 
stability and growth curves have unit period in ,8, and this character is indicated by 
the dashed lines on the extreme left and right of figure 9. While the behaviour of hi 
cannot be considered strictly periodic, it is repetitive after a fashion, and the hi = &(/I) 
curve associated with the neutral-stability curve of figure 9 is shown in figure 10. 

In the previous paragraphs we have noted the behaviour of the parametric insta- 
bility for moderate M .  There exists, however, an instability of the second kind which 
is operative for somewhat larger values of M ;  this is shown in figure 11 for the parameter 
values A, = 0 and 0.1 with iVl = 15, a = 0.5 and 8 = 150". Here M is shown as a function 
of ,8 over the same range as in figure 9. Again the stability curves have unit period in 
/?, but it is also interesting to speculate that they might extend to  infinity in M .  The 
neutral curves have been calculated for M < 12 and the two upward branches in the 
centre of the plot show no tendency to coalesce. 
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FIGURE 9. The complete neutral-stability curve h, = 0 and the curve of constant growth rate 
h, = 0.1 for the parametric instability. A large determinant (N,  = 15) is required for this case 
(0 = 150", a = 0.5) and the periodic nature of the curves is indicated by the dashed lines. 
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FIGURE 11. The growth-rate curves A, = 0 and 0.1 for the instability of the second kind. The 
parameter values Nl = 15, 0 = 150' and tc = 0.5 are the same as those for figure 9. The local 
minimum on the right-hand part of the graph does not correspond to a rotor instability. Tho 
triangle at P N - 0.15 corresponds to the dispersion relation shown in figure 12. 
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FIGURE 12. The dispersion relation for the instability of the second kind when A, = 0, N, = 15 
and a = 0-5. The last point on the segment of the curve at  ,8 N - 0.15 is indicated by the triangle 
in figure 11. Note the complete lack of simila.rity of this dispersion relation to  that shown in 
figure 10 for the parametric instability. 

Gill (1 974) has observed that large-amplitude waves become unstable through the 
mechanism of shear, but, by analogy with the propagation of plane internal gratvity 
waves, we suspect that a wave of sufficiently large amplitude could also overturn the 
ambient vorticity structure. A sufficient condition for this overturning instability not 
to occur is seen to be 

1 maximum horizontal fluid velocity) < 1 horizontal phase speed1 . 
If YP = U f k  sin ( lx  + my + w t )  and w = PI f k2, then the horizontal fluid velocity is seen 
to be -'Fy = - ( U m  f k) cos (Zx +my + w t )  while the horizontal phase speed is w f 1. 
Recalling that M = Uk2 fp, a sufficient condition for overturning of the ambient 
vorticity gradient not to occur is seen to be 

M < Il/sinO(. 

Thus for 6' = 150" the rotor instability might occur for any M > 2. Motivated by this 
simple calculation, we are led to  inquire whether the local minimum forming the 
right-hand part of the stability curve of figure 11 might not be due to this mode of 
instability. Calculations of this sort for different a have been made, however, and this 
trough has been observed to fall below M = 2 when these different a's are used. While 
the numerical searches have failed to turn up a stability curve lying wholly above 
M = 2, this limited evidence does not preclude the existence of an overturning 
instability. What does appear more likely at  this point is that the instability of the 
second kind shown in figure 1 1  is a mixed shearing and rotor instability for most 
values of M over which it occurs. For the sake of completeness, and to emphasize the 
distinctness of the instabilities shown in figures 9 and 11 ,  we include the hi = h,(P) 
curve associatedwithfigure 1 1  in figure 12. While this curve is not remarkable in itself, 
we do point out that its behaviour is separate and distinct from that of the dispersion 
relation for the parametric instability shown in figure 10; moreover, the repetitive 
nature of hi is again apparent in this figure. 

9 F L M  86 
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5. Conclusions and critique 
Numerical calculations of the parametric instability of barotropic Rossby waves 

on a beta-plane in fluid of constant depth have been made. This linearized study has 
made the approximation that for small times the amplitude of the basic-state wave is a 
constant, so that technically this work addresses only the question of the initial 
tendency of a disturbance to grow at a certain rate; the emergence of symmetry 
properties permits results for waves in the quadrant 9O0 < 0 < 180' to be extended 
to the half-plane 90" < 8 < 270". 

All such waves are parametrically unstable and for small wave amplitudes this 
instability reduces to the nonlinear resonant-interaction formalism of Longuet- 
Higgins & Gill (1967). Moreover, Gill's (1974) kinematic limit, that one disturbance 
wave must always be longer than the basic-state wave, is corroborated by the numerical 
work presented in $3.4.  Disturbances to Rossby waves of any amplitude can be of only 
two types: neutrally stable waves, which are in general not contiguous to a stability 
boundary, and unstable waves consisting of a temporally growing and decaying pair 
of the same wavelength, frequency and direction. Examination of the results for the 
stability of a wave with an eastward group velocity indicates that these instabilities 
may be one important element in the establishment of the quasi-permanent zonal 
currents noted by Rhines (1 975). 

The reader should be cautioned at  this point that this rigid-lid theory neglects the 
levelling effect associated with a free-surface model, so that results for the region 
0 - (a2+P 2 ) -4 < L, (the Rossby radius of deformation) may be qualitatively in- 
correct, even for the barotropic ocean treated in this case. 

Because the results of $ 3.4 suggest that the rate of energy abstraction from a finite- 
amplitude Rossby wave can be significant, the calculation of decay times for these 
waves would be very instructive. This would, however, involve a numerical integration 
over the area bounded by one of the contours of constant M shown in figures 5 and 6. 
The rapid variation of this surface M ( a ,  P )  for slight changes in the dependent vari- 
ables in some regions of a and P, however, indicates that this calculation would consti- 
tute an imposing task indeed. 

In  $4,  some calculations have been presented which suggest that the parametric 
instability and that of the second kind may be separate and distinct. In  addition, 
no evidence has been found to point to the existence of a pure overturning instability. 
While these limited results are interesting in their own right, they represent far too 
small a subset from which to generalize, and any generalizations made from them must 
be regarded as wholly conjectural. Nevertheless, i t  would appear from figures 10 and 
12 that the parametric instability is far more important than the second kind in 
determining the mesoscale dynamicsof the oceans. We suspect this because the former 
instability can exist and grow at a rather vigorous rate for basic-state amplitudes 
insufficiently large even to trigger the growth of the latter type. 
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Appendix 
The matrix of coefficients $, of the recursion relation 

aM(qn-1- 1 ) 2i(qn An -Pn) 9, + aMfqn+1 - 1) $,+I = 0, 
n = 0 , & 1 , + 2  ,..., + _ N ,  

where A,  = Ar+i(Ai+ncos8), qn = (n+p)2+a2, 

pn = i[asinO+(n+,8)cosO], 

is tridiagonal and of dimensions ( 2 N +  1) x ( 2 N +  1). A sufficient condition for a 
solution to exist is that the associated determinant A(a, p, A,, hi, M ;  8) vanishes. If 
we treat a, /?, A, and 8 as given parameters, we need locate only the crossing point(s) 
of the two curves 

in the Ai, M plane. 
A particularly eacient way to  accomplish this is the iterative Newton-Raphson 

technique (see, for example, Carnahan, Luther & Wilkes 1969, p. 319). Although 
this method is most widely used to find the roots of an equation with one independent 
variable, extension to multiple dimensions is quite easy. For convenience, we omit 
the variables specified as parameters and use only hi and M as independent variables. 

Suppose that we are close to a root in the hi, M plane, but that the actual location 
of the root is (A, + ahi, M + 6M).  Then we note that (A 1)will be satisfied identically at 
the latter point: 

R e h  = Ar = 0, ImA = Ai = 0 (A 1) 

0 = A,(& + &hi, M + S J f ) ,  0 = Ai(Ai + &Ai, M + SM). (A 2) 

By expanding the expressions in (A 2) about our estimated root (Ai, M ) ,  we may 
relate our first guess of the root location to its actual position. That is, 

where the subscript 0 refers to the point (Ai, M ) .  The calculation of these determinant 
derivatives is straightforward. Suppose that we define II, = (. . . , $-1, $,,, , . . ) so that 
the system to be solved is of the form R . II, = 0 and thus A = det R = I (  RII , say. Then 

where 

9-2 
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Determinant 
size (N,) M At 

3 0.245 0.3697 
5 0.23094 0.36729 
7 0.230864 0.3672781 
9 0.230869 0.3672782 

11 0.230876 0.3672783 

TABLE 1. Roots obtained by increasing determinant size and observing convergence to the correct 
value. The difference between values of M calculated with N ,  = 3 and Nl = 7 never exceeds of the 
order of 10 yo as long as M 5 0.3, and accuracy is not materially improved beyond N,  = 7. 
a = 0.595, /? = 0.57, 8 = 120" and A, = 0.02. 

M hi SM SA, 
0.155 0.250 1.6552 0.0663 
1.810 0.316 - 1.3483 - 0.0028 
0.462 0,313 - 0.1433 - 0.0085 
0.319 0.305 - 0.0522 - 0.00005 
0.266 0,305 - 0.0040 0~00000 
0.262 0.305 - 0.00005 0~00000 

TABLE 2. Convergence table for an initial guess of M = 0.155, A, = 0.250. The parameter values 
are N, = 7, 0 = 150°, a = 0.3724, /3 = 0.215 and A, = 0.001. 

By solving (A3)  for Shi and 6M,  we obtain explicit values by which we were in 

&hi = [(aA,./aM)Ai- (aAJaM)A,] /D error. Thus 

and 

where 

These values for 6Ai and 6M are corrections which are added to the initial estimates 
of hi and M .  By inserting these updated values into (A 3) an improved estimate can be 
obtained. 

Although successive iterations will refine the knowledge of a given root location, 
one is necessarily restricted to the limits of accuracy obtainable in the numerical 
problem as posed. Clearly then, a far more serious concern is determinant size. If n 
successively assumes the values 0, & 1, f 2, . . ., & N ,  the determinant size is given by 
ATl = 2N + 1, and we expect that increasing Nl will make the roots converge to a limit. 
This is in fact the case; indeed, reference to table 1 indicates that this convergence 
appears to be quite rapid. In  table 1, the same set of iterations has been performed 
repeatedly for 8 = 120" and A, = 0.02, but the value of Nl has been increased by two 
for each successive root search. As iVl is increased from 3 to 7, the roots (hi, M )  never 
change position by more than about 10 % (for M 5 0.3), most of the change occurring 
between Nl = 3 and 5. For iVl = 11 however, the results are always in agreement with 
those for Nl = 7 to within better than again for M 5 0.3. Evidently, an accuracy 
criterion that terminates iterations when successive roots agree to within 0.1 % is 
not restrictive, as after only a few iterations the process converges so rapidly as easily 
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FIGURE 13. Evaluation of the neutral-stability boundary of figure 1 1  for Nl = 7,9, 11 ,  13 and 15. 

Note that a determinant of relatively high order is required for these very large values of M .  

to exceed our expectation of the error. Therefore, since all calculations for the small- 
amplitude parametric instability have been performed with Nl = 7, we expect that 
the de facto accuracy of these results far exceeds the stated figure of 0.1 yo. 

It would be incorrect, however, to imply that the choice of determinant size Nl = 7 
will always yield correct results when M is of arbitrary size. The Newton-Raphson 
technique is applied by searching for a root in the hi, M plane after first fixing a, p, 
A, and 8. After the root has been obtained, one of the fixed parameters (p, say) is 
increased by a small amount and the previously found root is used as a starting point 
for a new iteration. This approach works well in most cases but can lead to problems 
if the curve loops back on itself or ends in a cusp. In  addition to  keeping track of the 
root, care must be taken because it frequently happens that the determinant size 
required for accuracy in these cases is quite large. In  figure 13 for instance, the cal- 
culation of a neutral curve (see figure 11 for the complete curve) is performed for 
N ,  = 7, 9, 11,  13 and 15 and we see that in these critical regions we cannot perform 
calculations with a determinant smaller than of thirteenth or fifteenth order. 
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